Анализ трендов содержания веществ в поверхностных водах рек на станциях ЕАНЕТ за 2007-2021 гг.

Рычкова А.А.,^{1,2}, Громов С.А.^{1,3}

¹ Институт Глобального Климата и Экологии им. ак. Ю.А. Израэля, Москва, Россия ² ФГБОУ ВО «Российский химико-технологический университет им. Д.И. Менделеева», Москва, Россия ³ ФГБУН Институт географии Российской академии наук, Москва, Россия

Введение. В районах расположения российских станций международной сети ЕАНЕТ на территории Восточной Сибири и Дальнего Востока проводятся наблюдения по программе мониторинга химического состава поверхностных вод с целью получения данных для оценки воздействия кислотных выпадений на экосистемы водоемов и малых рек. Ранее на основе данных многолетнего мониторинга были оценены количественно тренды изменения содержания основных ионов в воде рек Комаровка и Переемная, расположенных в районе станций ЕАНЕТ Приморская и Листвянка соответственно, с использованием методологии и программного обеспечения, разработанных Центром ЕМЕР-Восток [1,2]. В данной работе продолжено исследование по результатам наблюдений за период 2007-2021 гг. для оценки значимости трендов и вклада сезонных процессов. Для анализа рядов данных использовалась программа МАКЕSENS [3].

Метод расчета: В программе MAKESENS тренд (как среднее изменение за год для временного периода в целом) рассчитывается по непараметрическому методу Сена и описывается уравнением f(t)=Qt+B (где Q- угол наклона прямой, B- точка пересечения с осью у). Уровень значимости тренда — это вероятность отрицания исходной гипотезы: угол наклона тренда = 0.

Результаты расчетов: По данным наблюдений за 2007-2021 г. были рассчитаны тренды изменения содержания веществ в водах р. Комаровка и р. Переемная для каждого сезона (таблица 1).

Таблица 1 — Характеристики трендов содержания основных ионов в поверхностных водах на станциях EAHET в 2007-2021 гг.

Измеряемый ион (мг/л) и	р. Комаровка		р. Переемная	
период измерения	Значимость	Q	Значимость	Q
SO ₄ ²⁻ зима		0,008		0,045
SO ₄ ² -весна		0,147		0,034
SO ₄ ² -лето	+	0,200		0,147
SO ₄ ² -осень		0,258		0,085
SO ₄ ²⁻ среднегодовое		0,171		0,099
NO ₃ - зима	**	0,271	**	-0,023
NO ₃ - весна	*	0,113		-0,025
NO ₃ ⁻ лето	*	0,240		-0,010
NO ₃ - осень	+	0,084		-0,016
NO ₃ - среднегодовое	*	0,183		-0,017
NH ₄ ⁺ зима		0,001	+	-0,001
NH ₄ ⁺ весна		-0,008	**	-0,003
NH ₄ + лето		0,002	**	-0,001
NH ₄ + осень		0,001	**	-0,002
NH ₄ + среднегодовое		-0,001	***	-0,002
Са ²⁺ зима	**	0,089		-0,027
Са ²⁺ весна		0,067		0,017
Са ²⁺ лето	+	0,131		0,039
Са ²⁺ осень	**	0,198		-0,002
Са ²⁺ среднегодовое	*	0,128		-0,005
рН зима	*	-0,020		0,006
рН весна		-0,025		-0,001
рН лето		-0,017		-0,009
рН осень		-0,025	*	0,021
рН среднегодовое	*	-0,023		0,005

Обозначения:

- *** уровень значимости $\alpha = 0.001$, вероятность наличия тренда 99,9%;
- ** уровень значимости $\alpha = 0.01$, вероятность наличия тренда 99%;
- * уровень значимости $\alpha = 0.05$, вероятность наличия тренда 95%;
- + уровень значимости $\alpha = 0,1$, вероятность наличия тренда 90%;

пустая ячейка - уровень значимости $\alpha > 0,1$, вероятность наличия тренда < 90%.

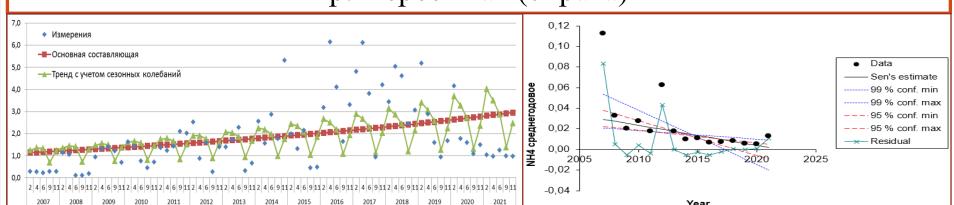
Прим.: положительные отрицательные значения Q показывают тренд роста, отрицательные – убывания.

Исследование выполнено в рамках НИОКТР АААА-А20-120013190049-4 «Развитие методов и технологий мониторинга загрязнения природной среды вследствие трансграничного переноса загрязняющих веществ (ЕЭК ООН: ЕМЕП, МСП КМ) и кислотных выпадений в Восточной Азии (ЕАНЕТ)» (План НИТР Росгидромета на 2022 г., т. 4.4)

Регион исследования:

Долгосрочные наблюдения ведутся на российской сети ЕАНЕТ на двух водных объектах:

- р. Переемная, бассейн оз. Байкал, в регионе расположения станции атмосферного мониторинга ЕАНЕТ Листвянка;
- р. Комаровка, приток р. Раздольная (бассейн Японского моря), на станции Приморская.


Данные и информация для оценки:

Отбор проб и измерения концентраций веществ проводились в разные гидрологические фазы рек (сезоны года), 5 раз в год для р. Комаровки и 4 раза в год для р. Переемной. Для расчета трендов использовались фактические месячные значения.

Анализ трендов:

Полученные результаты показали, что в р. Комаровка наблюдается увеличение концентраций нитратов. Значимые тренды нитратов наблюдаются во все сезоны, наибольший вклад вносят зимний, весенний и летний сезоны, тренды для которых составляют, соответственно, 0,271 мг/л в год (на уровне значимости α =0,01), 0,113 мг/л в год (α =0,05) и 0,240 мг/л в год (α =0,05). Также в р. Комаровка наблюдается постепенное увеличение содержания кальция в зимний и осенний сезоны. Ранее в р. Комаровка наблюдалась тенденция понижения рН, однако в 2021 году значения рН были значительно выше среднего за весь период наблюдений, и тренд стал менее значимым.

Изменения концентраций (мг/л) и составляющих трендов нитратов в поверхностных водах р. Комаровка (слева) и катионов аммония в р. Переемная (справа)

Для р. Переемная наблюдается значимый тренд снижения концентраций нитратов в зимний период, составляя -0,023 мг/л в год (α =0,01), а также уменьшение содержания катионов аммония, значимые тренды которого прослеживаются во все сезоны. В осенний период присутствует тренд повышения рН (на уровне значимости α =0,05).

Заключение:

Полученные результаты показали, что в р. Комаровка наблюдается увеличение концентраций нитратов и кальция в разные сезоны. Тенденция увеличения кислотности в р. Комаровка сохранилась, однако ее тренд стал менее значимым. Для р. Переемная наблюдаются значимые тренды снижения концентраций катионов аммония. Для других измеряемых ионов в обеих реках не было выявлено значимых трендов.

Список использованной литературы:

- 1. Рычкова А.А., Громов С.А., Жигачева Е.С. Оценка трендов концентраций соединений серы и азота в поверхностных водах рек на станциях ЕАНЕТ за 2007-2020 гг. //Системы контроля окружающей среды 2021, Тезисы Международной научнопрактической конференции. Севастополь, 2021: с. 80.
- 2. MSC-East. 2015. Discussion on trend analysis. GAW/EMEP Task Force on Measurement and Modelling, 5-8 May 2015. 10 p.
- 3. Timo Salmi et al. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen's slope estimates the Excel template application MAKESENS. Finnish Meteorological Institute, Helsinki, 2002. 35 p.

