КРАТКИЙ НАУЧНО-ТЕХНИЧЕСКИЙ ОТЧЕТ ОБ ЭКСПЕДИЦИОННОЙ ДЕЯТЕЛЬНОСТИ ИПТС В ЛЕТНИЙ ПЕРИОД 2023 ГОДА ВВЕДЕНИЕ

В современную климатическую эпоху значительное внимание исследователей направленно на получение оценок тенденции понижения величины рН в поверхностных водах Мирового океана и его окраинных морей. Подкисление океана, вызванное увеличением СО2 в нижней тропосфере антропогенного происхождения, является серьезной проблемой, так как оказывает негативное влияние на морские экосистемы [1,2]. Тенденции изменения величины рН, наряду с глобальным потеплением, признано считать одним из основных проявлений антропогенного изменения климата. Черное море, как часть Мирового океана, также подвержено антропогенным воздействиям, возникающим в результате роста концентрации СО2 в приводном слое тропосферы. В связи с этим природно-технических сотрудники Института систем проводят регулярные экспедиционные исследования по изучению пространственно-временной изменчивости величины рН в поверхностном и промежуточном слоях вод Черного моря. По результатам каждой экспедиции на НИС «Профессор Водяницкий», пополняется уникальный массив данных о поле рН, который необходим для получения обоснованных оценок тенденции изменения величины рН в водах Черного моря.

В настоящем отчете представлены материалы о ходе выполнения экспедиционных исследований отрядом ИПТС в 127 и 128 рейсах НИС «Профессор Водяницкий» и краткая информация о полученных результатах.

МАТЕРИАЛ И МЕТОДИКА

Определение величины рН. Пробы воды для определения рН отбирались в емкости необходимого объема на выборочных станциях не менее 3-4 раз в сутки с поверхности и с горизонтов 50 и 75 метров — батометрами ФИЦ ИнБЮМ. Номера и количество проб, отобранных в течении каждого рейса, представлены в таблицах 1 и 2. Величина рН определялась с помощью лабораторного рН-метра (рН-150МИ) совместно с электродной системой, включающей измерительный и вспомогательный электроды. Измерительный электрод представляет собой стеклянный электрод с допускаемой величиной электрического сопротивления от 10 до 1000 мОм. Вспомогательный электрод — хлорсеребряный электрод с электрическим сопротивлением не более 20 кОм. Вода отбирались в мерные колбы. Значение рН фиксировалось после погружения электродов в пробу до достижения стабильных показаний. Величина рН определялась сразу после отбора проб.

Поскольку температура и давление *in situ* отличалась от условий, при которых проводились измерения рH, то полученные значения водородного показателя не являлись корректными без учета соответствующих поправок. Потому для каждого измерения была введена температурная поправка. Формула для вычисления рH _{in situ} имела вид:

$$pH_{in \, situ} = pH_{u_{3M}} + k(t_1 - t_2), \tag{1}$$

где $pH_{uзм}$ — измеренное значение pH при температуре в момент измерения;

 t_{I} – температура исследуемой пробы в момент измерения;

 t_2 – температура воды *in situ*

k – температурный коэффициент.

Температурный коэффициент равен 0,0118 ед.рН/°С при давлении 101324 Па. Эта формула верна для всех значений солености и температуры только для глубин до 500 м., на которых влияние гидростатического давления незначительно и находится в пределах погрешности измерения рН [3].

ХОД ВЫПОЛНЕНИЯ ЭКСПЕДИЦИОННЫХ ИССЛЕДОВАНИЙ

Таблица 1. Общая информация об определении величины pH в экспедиции на HИС «Профессор Водяницкий» в 127 рейсе (14 июня $2023 \, \Gamma$. -07 июля $2023 \, \Gamma$)

Наблюдения									
Виды наблюдений	Структурная	Количество	№ станций						
	единица проб		·						
Величина рН	Число	105 - c	116	104.1	117	116.1			
	измерений	поверхности;	134	134.1	135	137			
		63 - c	137.1	140 140.1		138			
		горизонта 50 м;	139	139.1	138.1	149			
		43 - c	154	156	157	157.1			
		горизонта 75 м.	160.2	160	159	158			
			160.1	161.1	169	167			
			170	171 16	55	218			
			218.1	209	210	209.1			
			212	161	157	104.1			
			117	116.1	120	119			
			118	118.1	119.1	120.1			
			137	137.1	136.1	135.1			
			140	140.1	150	151			
			153	154	156	157			
			157.1	158	160.1	161.1			
			161	169	167	170			
			171	182	191	188			
			206	204	192	202			
			208	209	209.1	212			
			213	213.1	215.1	235.1			
			235	215	196	192			
			204	184	187	176			
			173	172	161				
			157.1	150	151	138.1			
			138	136.1	137.1	137			
			116.1						

Таблица 2. Общая информация об определении величины pH в экспедиции на НИС «Профессор Водяницкий» в 128 рейсе (01 августа – 25 августа 2023 г.)

Наблюдения								
Виды наблюдений	Структурная	Количество		№ станций				
	единица	проб						
Величина рН	Число	98 - c	104.1	117 116.1 120 119 118				
	измерений	поверх-		118.1 119.1 120.1 137				
		ности; 47 -	137.1	136.1 135 134.1 134				
		горизонта	135.1	139 139.1 140.1 139.1				
		50 м; 37 –,		149 150 151 153				
		с горизонта	157.7	157 156 154 154 158				
		75 м.	159	160 160.2 160,1 161.1				
			170	169 168 167 171 166				
			179	178 176 187 175				
				188 190 191 192 196				
				204 206 198 199 201				
				208 210 211 236 235.1				
				235 215 215.1 213.1				
				236.1 213 212 209.1				
				209 210 218.1 216				
			218	166.1 165.1 170 161				
			160.2	160 159 158 154 153				
				154 156 157 149 149				
				138.1 140.1 140 135.1				
			134	116.1 117 116				

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Величина рН, измеренная на поверхности моря в прибрежном районе юго-восточной части Крыма с 14 июня по 7 июля, изменялась в диапазоне: 8,17 – 8,55 ед. рН при среднем значении 8, 35 ед. рН. В период с 1 по 25 августа значения рН изменялись от 8,12 до 8,44 ед. рН. Средняя величина рН в этот период составляла 8,28 ед. рН.

В Черном море величина pH понижается с глубиной (за исключением горизонтов 10–30 м в некоторые сезоны, [4]). Понижение pH в слое 60–150 м, по мнению ряда исследователей, связано с уменьшением интенсивности вентиляции вод и окислением сероводорода в зоне сосуществования H_2S и O_2 [5]. По другим данным такая зона отсутствует [6].

На горизонтах 50 и 75 метров с 14 июня по 7 июля величина рН изменялась в диапазоне от 8,12 до 8,38 при средней величине 8,26 ед. рН (на 50 м), и в диапазоне от 8,03 до 8,22 при средней величине 8,10 ед. рН (на 75 м). В августе на горизонте 50 м она изменялась от 8,08 до 8,40 при средней величине 8,22 ед. рН, а на горизонте 75 м — от 7,99 до 8,27 ед. рН, а средняя величина рН здесь составляла 8,13 ед. рН.

ЗАКЛЮЧЕНИЕ

По результатам экспедиционных исследований в 127 и 128 рейсе величина рН находилась в пределах климатической нормы. Систематизация полученных данных и их анализ позволит получить обоснованные оценки тенденций изменения величины рН в водах Чёрного моря.

Экспедиционные работы выполнялись в соответствии с темой государственного задания ИПТС. № госрегистрации 121122300072-3 «Фундаментальные и прикладные исследования закономерностей и механизмов формирования региональных изменений природной среды и климата под влиянием глобальных процессов в системе океанатмосфера и антропогенного воздействия»

ЛИТЕРАТУРА

- 1. Andersson A.J., Mackenzie F.T., Bates N.R. Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers // Marine Ecology Progress Series. 2008. Vol. 373. P. 265–273.
- 2. Ries J.B. Skeletal mineralogy in a high-CO2 world // Journal of Experimental Marine Biology and Ecology. 2011. Vol. 403. P. 54–64.
- 3. Рябинин А.И., Шибаева С.А. Инструментальные методы анализа в экологии: Учебное пособие. – Севастополь: СИЯЭиП, 2022. – 168 с.
- 4. Полонский А.Б., Гребнева Е.А. Климатическое распределение рН в глубоководной части Черного моря // Системы контроля окружающей среды, ИПТС. 2017. № 10 (30). С. 88–95.
- 5. Симонов А.И., Альтман Э.Н. Гершанович Д.Е. (ред.) Гидрометеорология и гидрохимия морей СССР. СПб: Гидрометеоиздат, 1992. Т. 4: Черное море, вып. 2. Гидрохимические условия и океанологические основы формирования биологической продуктивности. 220 с.
- 6. Безбородов А.А., Новоселов А.А. Новые данные о распределении кислорода на границе аэробных вод в Черном море. Пересмотр устоявшихся представлений. Севастополь: МГИ АНУ. Деп. ВИНИТИ, 1989, № 6773-В 89. 18 с.